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Differential Equations

Differential equations are of significant scientific and engineering interest.

They relate quantities to rates of change (i.e. derivatives)

Applied to physics, chemistry, biology, engineering, economics

However, equations of practical interest are generally not analytically
solvable

Instead, numerical methods compute approximate solutions over a
discrete mesh or grid
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Example: Fluid Flow

Credit: Pavel Dobryakov
https://paveldogreat.github.io/WebGL-Fluid-Simulation/
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Example: Infectious Disease
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Why Neural Networks?

Traditional numerical methods perform well and the theory for stability
and convergence is well-established. Why use neural networks? Some
potential advantages:

Remove reliance on finely-crafted grids which suffer the “curse of
dimensionality”; can be more tractable in high-dimensional settings
(Sirignano & Spiliopoulos, 2018; Raissi, 2018; Han et al., 2017)

Theoretically, neural networks can approximate any reasonable
function (Hornik et al., 1989); closed-form, differentiable functions
could solve inverse problems, provide more principled & accurate
interpolation scheme

Can more precisely obey certain constraints, such as conservation of
energy (Mattheakis et al., 2020)

Embarassingly data-parallel, even in temporal dimensions; more
readily parallelizable for computational speedup
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Artificial Neural Networks

Parametric models loosely based on the human brain. Sequence of affine
transformations followed by activation functions:

y = flayern

(
flayern−1

(
...
(
flayer1

(x)
)
...
))

where
flayeri (x) = σ

(
W T

i x + bi

)
∀i ∈ [1, ...n]

with σ(·) = tanh(·), for example.
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Unsupervised Neural Networks for Differential Equations

Lagaris et al. (1998) proposed solving differential equations in an
unsupervised manner with neural networks. Consider differential equations
of the form

F (x ,Ψ(x),∆Ψ(x),∆2Ψ(x)) = 0. (1)

The learning problem is formulated as minimizing the sum of squared
errors (i.e. residuals) of the above equation

min
θ

∑
x∈D

F (x ,Ψθ(x),∆Ψθ(x),∆2Ψθ(x))2 (2)

where Ψθ is a neural network parameterized by θ, and Ψθ(x) yields
predicted solutions.
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Adjusting for Constraints

Mattheakis et al. (2019) consider adjusting the neural network solution
N(t) to satisfy the initial condition N(t0) = x0. This is achieved by
applying the transformation

Ñ(t) = x0 +
(

1− e−(t−t0)
)
N(t) (3)

Intuitively, this adjusts the output of the neural network N(t) to be exactly
x0 when t = t0, and decays this constraint exponentially in t. We apply
this adjustment throughout to satisfy initial and boundary conditions.
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Example: Simple Harmonic Oscillator

Consider the motion x(t) of an oscillating body (e.g. a mass on a
frictionless spring) given by

ẍ(t) + x(t) = 0 (4)

with initial conditions x0 = 0 and ẋ0 = 1.1 We optimize

min
θ

∑
t∈T

(
ˆ̈xθ(t) + x̂θ(t)

)2
(5)

to train the model, where x̂θ(t) is the output of the neural network.

1Exact analytical solution x(t) = sin(t)
Dylan L. Randle (Harvard) DiffEQ NNs Master’s Thesis Defense 12 / 56



Example: Simple Harmonic Oscillator

A two hidden layer network composed of 30 units per layer solves this
problem to a high degree of accuracy (low mean squared error).

For more detail on this classical unsupervised neural network approach, see
e.g. Lagaris et al. (1998); Mattheakis et al. (2019).
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Motivation

Classical setting of data following a Gaussian noise model

y = x + ε, ε ∼ N(0, σ2) (6)

has clear justification for the squared error loss function (L2 norm)
from the maximum likelihood principle

Deterministic differential equations, with no noise model, have no
such justification. To circumvent this we propose learning the loss
function with Generative Adversarial Networks (GANs)

Moreover, GANs have been shown to excel in scenarios where classic
loss functions struggle (Larsen et al., 2015; Ledig et al., 2016; Karras
et al., 2018)
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Generative Adversarial Networks (GANs)

Goodfellow et al. (2014) introduced GANs as a two player game between a
generator G and discriminator D such that the generator attempts to trick
the discriminator to classify “fake” samples as “real”. Formally, one
optimizes the minimax objective

min
G

max
D

V (D,G ) = Ex∼pdata(x)[logD(x)] +Ez∼pz (z)[1− logD(G (z))] (7)

where x ∼ pdata(x) denotes samples from the empirical data distribution
and pz ∼ N (0, 1) samples in latent space. In practice, the optimization
alternates between gradient ascent and descent steps for D and G
respectively.
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Differential Equation GAN (DEQGAN)

Separate equation into left-hand side LHS and right-hand side RHS , and
set LHS as the “fake” component and RHS as “real”. DEQGAN learns to
approximately solve the equation by setting LHS = RHS .
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DEQGAN Algorithm

Algorithm 1 DEQGAN

1: Input: Differential equation F, generator G (·; θg ), discriminator
D(·; θd), mesh x of m elements with spacing d , initial/boundary con-
dition adjustment φ, learning rates αG , αD , Adam moment coefficients
βG1, βG2, βD1, βD2

2: for i = 1 to N do
3: Sample m points xs ∼ x +N (0, d3 )

4: Forward pass ψ̂ = G (xs)
5: Adjust for conditions ψ̂′ = φ(ψ̂)
6: Set LHS = F (x , ψ̂′,∇ψ̂′,∇2ψ̂′), RHS = 0
7: Update generator θg ← Adam(θg , αG ,−ηG , βG1, βG2)
8: Update discriminator θd ← Adam(θd , αD , ηD , βD1, βD2)
9: end for

Return G

Dylan L. Randle (Harvard) DiffEQ NNs Master’s Thesis Defense 18 / 56



Extensions to Traditional GANs

Two Time-Scale Update Rule (TTUR): discriminator and generator
trained with separate learning rates; in some cases, TTUR ensures
convergence to a stable local Nash equilibrium (Heusel et al., 2017)

Spectral Normalization (Miyato et al., 2018):

WSN =
W

σ(W )
, (8)

where
σ(W ) = max

‖h‖2≤1
‖Wh‖2, (9)

which bounds the Lipschitz constant of the discriminator ≤ 1.
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Experiments

Perform experiments on 4 differential equations of increasing
complexity

Compare DEQGAN to the classical unsupervised neural network
method with L1, L2, and Huber loss functions

Credit: Pediredla & Seelamantula (2011)

Show that DEQGAN obtains multiple orders of magnitude lower
mean squared errors than classical neural network methods
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Experiment: Exponential Decay

Consider a model for population decay x(t) given by the exponential
differential equation

ẋ(t) + x(t) = 0, (10)

with initial condition x(0) = 1.2 We set

LHS = ẋ(t) + x(t),

RHS = 0.

2The ground truth solution x(t) = e−t can be obtained analytically.
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Experiment: Exponential Decay

G and D losses initially exhibit high variability but reach equilibrium

Mean squared error decreases to 10−11 by step ∼400
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Experiment: Exponential Decay

DEQGAN achieves ∼10−6 times lower mean squared error than
classic loss functions (see video)
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Experiment: Simple Oscillator

Consider the motion of an idealized oscillating body x(t), which can be
modeled by the simple harmonic oscillator differential equation

ẍ(t) + x(t) = 0, (11)

with initial conditions x(0) = 0, and ẋ(0) = 1.3 We set

LHS = ẍ(t) + x(t),

RHS = 0.

3This differential equation has an exact solution x(t) = sin t.
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Experiment: Simple Oscillator

G and D losses reach equilibrium almost monotonically

Mean squared error decreases to ∼10−7

Dylan L. Randle (Harvard) DiffEQ NNs Master’s Thesis Defense 25 / 56



Experiment: Simple Oscillator

DEQGAN achieves ∼10−4 times lower mean squared error than
classical loss functions (see video)
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Experiment: Nonlinear Oscillator

Consider the less idealized motion x(t) of an oscillating body subject to
additional forces, given by the nonlinear oscillator differential equation

ẍ(t) + 2βẋ(t) + ω2x(t) + φx(t)2 + εx(t)3 = 0, (12)

with β = 0.1, ω = 1, φ = 1, ε = 0.1 and initial conditions x(0) = 0 and
ẋ(0) = 0.5.4 We set

LHS = ẍ + 2βẋ + ω2x + φx2 + εx3,

RHS = 0.

4The equation does not have an analytical solution. We use the fourth-order
Runge-Kutta method to obtain “ground truth” solutions.
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Experiment: Nonlinear Oscillator

Fast convergence of G and D losses

Validation mean squared error reaches ∼10−7
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Experiment: Nonlinear Oscillator

DEQGAN reaches ∼10−5 times lower error than classical loss
functions (see video)
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Experiment: SIR System of Equations

Consider the Susceptible S(t), Infected I (t), Recovered R(t) model for the
spread of an infectious disease over time t:

dS

dt
= −β IS

N
(13)

dI

dt
= β

IS

N
− γI (14)

dR

dt
= γI (15)

with β = 3, γ = 1, constant population N = S + I + R, and initial
conditions S0 = 0.99, I0 = 0.01,R0 = 0.5

5We obtain ground truth solutions through numerical integration.
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Experiment: SIR System of Equations

We set

LHS =

[
dS

dt
+ β

IS

N
,
dI

dt
− β IS

N
+ γI ,

dR

dt
− γI

]T
,

RHS = [0, 0, 0]T .

Dylan L. Randle (Harvard) DiffEQ NNs Master’s Thesis Defense 31 / 56



Experiment: SIR System of Equations

Fast convergence of G and D losses to equilibrium

Validation mean squared error reaches ∼10−5

Residuals are small for each equation
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Experiment: SIR System of Equations

DEQGAN obtains ∼10−4 times lower mean squared error; classic
methods collapse to trivial solution (see video)
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Discussion: Instability to Model Initialization

High variability in solution accuracy when model weight initialization
(either D or G , or both) not fixed (via random seed)
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Instability: Varying Model Initialization

Random search shows settings exist for each model weight
initialization seed that perform well (filtering on MSE ≤ 10−8)
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Instability: Pattern of Hyperparameters

High generator and low discriminator learning rates mostly lead to
best performance; still requires hyperparameter search
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Instability: Solution

Perform hyperparameter tuning (e.g. random search) with fixed
model initialization

Leverage hyperparameter tuning schedulers (e.g. asynchronous
Hyperband) to quickly and reliably find good hyperparameter
settings6

6Ray-Tune: https://docs.ray.io/en/latest/tune.html
Dylan L. Randle (Harvard) DiffEQ NNs Master’s Thesis Defense 37 / 56
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Discussion: Prior Formulations

For completeness, briefly mention negative results:

Balancing: e.g. setting LHS = ẋ and RHS = −x for exponential.
Fails possibly because “real” data distribution pdata(x) changing as
generator updated

Semi-Supervised: worse than fully unsupervised; perhaps because
unsupervised solutions require adhering to equation, while supervised
do not

Other GAN Extensions: conditional GAN & Wasserstein GAN with
gradient penalty (WGAN-GP); both sub-optimal upon reformulation
and implementation of spectral normalization
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Motivation

Unsupervised neural network method for differential equations is not
constrained to a fixed grid of points

Non-convex optimization procedures often benefit from introducing
stochasticity (e.g. stochastic gradient descent); sampling can induce
useful stochasticity

Our empirical results show that the choice of sampling procedure has
significant impact on convergence and accuracy
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Methods

Fixed grid: no sampling, use the same fixed set of points at each
gradient step

Uniformly sampling: each point is sampled i.i.d. uniform with support
over the domain of the problem x ∼ U(D)

“Perturbed” sampling: “jitter” points from a fixed grid with i.i.d.
Gaussian noise. For each point in the mesh, add

ε ∼ N
(
µ = 0, σ =

∆x

τ

)
(16)

where ∆x is the inter-point spacing, and τ is a hyperparameter that
controls sample variance
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Effect of Tau
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Example: Reynolds-Averaged Navier Stokes

Consider the Reynolds-Averaged Navier Stokes (RANS) equation for the
average velocity profile u of an incompressible fluid at position y in a
one-dimensional channel given by

ν
d2u

dy2
− d

dy

(
(κy)2

∣∣∣∣dudy
∣∣∣∣ dudy

)
− 1

ρ

dp

dx
= 0 (17)

where ν = 0.0055, κ = 0.41, ρ = 1 are given constants and dp
dx = −1 is a

given pressure gradient.
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Example: RANS with Fixed Grid

Overfitting: validation loss diverges by step ∼104
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Example: RANS with Uniform Sampling

Overfitting reduced but loss exhibits higher variance; mean squared
error is higher (solution is worse)
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Example: RANS with Perturbed Sampling

Overfitting eliminated, loss variance reduced, and lowest mean
squared error (best solution)
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Conclusion

Introduced a new method (DEQGAN) that leverages adversarial
training to learn the loss function for solving differential equations
with unsupervised neural networks

Showed that DEQGAN obtains orders of magnitude lower mean
squared errors than classical unsupervised neural network methods
with L1, L2, and Huber loss functions

Provided a foundation for future work on learning the loss function for
differential equations with unsupervised neural networks

Introduced a sampling technique that yields robustness to overfitting
while improving solution quality
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Future Work

Experiment with more complex, potentially stochastic, differential
equations

Conduct further robustness studies, e.g. across initial conditions and
experiments

Investigate more sophisticated sampling techniques, e.g. active
learning
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Fin

Questions?
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Additional Material: Exponential with Classical Tuning

Dylan L. Randle (Harvard) DiffEQ NNs Master’s Thesis Defense 53 / 56



Additional Material: Simple Oscillator with Classical
Tuning
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Additional Material: Nonlinear Oscillator with Classical
Tuning
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Additional Material: SIR System with Classical Tuning
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