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Abstract

Solving differential equations with neural networks in an unsupervised manner has become an
exciting area of research. Learning closed-form, differentiable functions that solve differential equa-
tions has vast applications, and leveraging neural networks in particular may provide a range of ben-
efits over traditional numerical methods, from high-dimensional performance to computational
efficiency.

This thesis develops a newmethod for solving differential equations with unsupervised neural
networks that applies Generative Adversarial Networks (GANs) to learn the loss function for op-
timizing the neural network. We present empirical results on a variety of problems showing that
our method, which we call Differential Equation GAN (DEQGAN), can obtain multiple orders of
magnitude lower mean squared errors than the classical unsupervised neural network method based
on (squared) L2, L1, and Huber loss functions. Additionally, we present a simple perturbation-
based sampling approach that reduces model overfitting and increases solution quality. Finally, we
provide a discussion of training stability, hyperparameter tuning, and prior formulations of DEQ-
GAN to provide insights into our approach.*

*All code will be made available at https://github.com/dylanrandle/denn.
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0
Introduction

Differential equations involve the derivatives of a function, or a set of functions, and thereby

define relationships between quantities and their rates of change. This initially simple and elegant

idea, however, belies a vast utility and rich mathematical complexity.

Solutions to differential equations are of significant interest to a broad range of disciplines. In

fields such as physics, chemistry, biology, engineering, and economics, differential equations are
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applied to the modeling of important and complex phenomena.

Solving differential equations has been the topic of much work for centuries and, coupled with

powerful computers and sophisticated numerical algorithms, they have been applied to the study of

challenging problems such as fluid flow4.

Concurrently, recent advances in so-called “deep learning”* have led to major successes in areas

of computer vision18,15, natural language processing37,2,38, and control tasks such as video games,

robotics, and even the ancient game of Go31,5,7,33. This has led researchers to apply neural networks

to problems outside the domain of traditional computer science and machine learning, such as in

radiology23.

Inspired jointly by these successes, and the provable distinction that neural networks are universal

function approximators13, this work leverages neural networks to solve differential equations in a

fully unsupervised manner.

We are motivated to pursue this research through a variety of factors. First, by removing a re-

liance on finely crafted grids which suffer from the “curse of dimensionality” in high dimensions,

neural networks may be more effective than traditional methods in high-dimensional settings34,32,9.

Furthermore, learning a closed-form, differentiable function which solves differential equations can

in principle allow us to tackle inverse problems by differentiating backwards from solutions to ini-

tial conditions. By the same token, directly learning a functional solution provides a principled, and

potentially more accurate, interpolation scheme20. Moreover, forward passes of neural networks are

embarrassingly data-parallel, even in temporal dimensions, and can readily leverage parallel comput-

ing architectures for computational speedups. Finally, Mattheakis et al. 28 show that neural network

solutions may obey certain physical constraints, such as conservation of energy, more accurately.

The initial idea for solving differential equations with neural networks was proposed by Lagaris

*Deep learning is a term coined to describe a subset of machine learning methods which train many-layer
(“deep”) neural networks.
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et al. 20 . They showed that a neural network method could outperform the finite element method

in terms of interpolation accuracy while still maintaining equal solution accuracy on a fixed mesh.

Others have further developed this idea, providing evidence that neural networks can outperform

traditional methods in a variety of ways.

Lagaris et al. expanded their work to consider arbitrarily-shaped domains in higher dimensions22,

and applied neural networks to quantummechanics21. Recent work by Sirignano & Spiliopoulos 35

has used neural networks in place of basis functions to solve high-dimensional partial differential

equations. To reduce the need to re-learn known physical laws, Mattheakis et al. 27 embedded phys-

ical symmetries into the structure of neural networks to improve training convergence and solution

accuracy. Kumar & Yadav 19 presents a survey of neural network and radial basis function methods

for solving differential equations.

Interest in research on solving differential equations with neural networks is growing. This thesis

develops techniques for this line of research, focusing on two aspects of the problem. First, we show

that different strategies for sampling training points can have a considerable impact on solution

quality, and that by perturbing grid points with Gaussian noise we can reduce overfitting while im-

proving accuracy. Second, we present a new method which trains Generative Adversarial Networks

(GANs)6 to solve differential equations in a fully unsupervised manner. We argue that “learning”

the loss function in this way is worthwhile based on the lack of theoretical justification supporting

classical loss functions and empirical results which we present in Chapter 2.
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1
Unsupervised Neural Networks for

Differential Equations

Artificial neural networks are powerful parametric models loosely based on the human

brain. They are hierarchical in nature, composed of layers of “neurons” (or units) which transform

their inputs through (often nonlinear) activation functions. An artificial neural network can be

4



Figure 1.1: Examples of fully-connected neural network architectures. Neural networks can be composed of arbitrary
numbers of layers and neurons per layer. The first (le[-most) layer is called the input layer while the last (right-most)
layer is called the output layer. The layers in between the input and output layers are called “hidden” layers.

represented as a sequence of affine transformations followed by activation functions

y = flayern
(
flayern−1

(
...
(
flayer1(x)

)
...
))

(1.1)

where

flayeri(x) = σ
(
WT

i x+ bi
)
∀i ∈ [1, ...n] (1.2)

with σ(·) = tanh(·), for example. Figure 1.1 plots a variety of possible fully-connected* neural

network architectures.

Neural networks have been shown, in the limit of infinitely many neurons, to be capable of ap-

proximating any reasonable function13. This property has led researchers to doggedly pursue neural

networks for many years, developing efficient techniques, most notably “backpropagation”11, for

*Fully-connected networks are a type of neural network architecture in which each neuron in layer i is
connected to all neurons in the next layer i+ 1.
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training these often high-dimensional models.

Early work by Lagaris et al. 20 proposed solving differential equations in an unsupervised manner

with neural networks. The paper considers general differential equations of the form

F(t,Ψ(t),ΔΨ(t),Δ2Ψ(t)) = 0 (1.3)

where Ψ(t) is the solution of the equation, Δ and Δ2 represent the first and second derivatives, and

the system is subject to certain boundary or initial conditions. The learning problem is then formu-

lated as minimizing the sum of squared errors of the above equation

min
θ

∑
t∈D

F(t,Ψθ(t),ΔΨθ(t),Δ2Ψθ(t))2 (1.4)

where Ψθ is a neural network parameterized by θ. This allows one to use backpropagation to train

the parameters of the neural network to satisfy the differential equation, thus training the model to

solve the equation.

For example, consider the motion x(t) of an oscillating body (e.g. a mass on a frictionless spring)

given by the simple harmonic oscillator differential equation

ẍ(t) + x(t) = 0 (1.5)

with initial conditions x0 = 0 and ẋ0 = 1. This equation has an exact analytical solution of the form

x(t) = sin(t).

We can solve this equation without access to training data (i.e. ground truth solutions) using a

neural network which minimizes the loss function

min
θ

∑
t∈D

(
ˆ̈x(t) + x̂(t)

)2
(1.6)
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Figure 1.2: Visualizaঞon of a fully-connected neural network trained to solve the simple oscillator differenঞal equaঞon.
The le[-most figure plots the mean squared error vs. step (iteraঞon) count. To the right of this, we plot the unsuper-
vised loss for each step. Right of this we plot the predicঞon of the model x̂ and the true analyঞc soluঞon x as funcঞons
of ঞme t. The right-most figure plots the absolute value of the residual of the predicted soluঞon F̂.

where Ψθ(t) = x̂(t) is the output of a neural network parameterized by θ,D specifies the time

domain of the problem, and the minimization is over the parameters of the neural network. We use

backpropagation to iteratively optimize the objective, and automatic differentiation to compute the

derivatives ˆ̈x = ∂2x̂
∂t2 .

A two hidden layer network composed of 30 units per layer can solve this problem to a high de-

gree of accuracy. Figure 1.2 presents the result of training the model without any supervision in the

form of solution data. The neural network learns to solve the equation simply by minimizing the

residuals as shown in Equation 1.6.

In Figure 1.2, we observe that the mean squared error of the predicted solution, computed

against the known ground truth, decreases steadily over the course of training and converges to

∼10−6. We note that the unsupervised training loss (which is the mean squared error of the resid-

uals) is similarly decreasing and converges to∼10−5. We see that the predicted solution x̂ is indis-

tinguishable from the ground truth solution x, and that the absolute value of the residuals of the

candidate solution F̂ are small across the domain. This example nicely illustrates the classical method

for training unsupervised neural networks to solve differential equations.†

†For more information, see Lagaris et al. 20 andMattheakis et al. 27 .

7



1.1 Adjusting for Constraints

Mattheakis et al. 27 show that it is possible to embed physical constraints into neural networks to

directly optimize for solutions that are physically realizable. They demonstrate that their method

improves convergence of neural networks trained to solve differential equations. Throughout this

work, we employ the adjustments proposed by their paper to the candidate solutions as a way to

satisfy initial and boundary conditions for differential equations.

For example, consider adjusting the neural network solutionN(t) to satisfy the initial condition

N(t0) = x0. This is achieved by applying the transformation

Ñ(t) = Φ (N(t)) = x0 +
(
1− e−(t−t0)

)
N(t) (1.7)

Intuitively, Equation 1.7 adjusts the output of the neural networkN(t) to be exactly x0 when t =

t0, and decays this constraint exponentially in t. We apply this transformation to each prediction

from the neural network as a way of exactly satisfying initial and boundary conditions.

1.2 Sampling Strategies

The traditional approach for training a neural network to solve a differential equation considers a

fixed mesh of points over which to minimize the unsupervised loss (the residuals of the equation).

When moving beyond simple differential equations, however, it is helpful to think of ways to im-

prove training convergence. One technique we have developed leverages the fact that, with the unsu-

pervised neural network method for solving differential equations, we are not constrained to using a

fixed grid of points and are thus free to sample them.

Our motivation for performing sampling stems from the fact that non-convex optimization pro-

cedures often benefit from introducing stochasticity (e.g. in stochastic gradient descent), and the
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observation that sampling is a mechanism through which one can induce this useful randomness.

Moreover, our empirical results, presented below, show that the choice of sampling procedure has a

significant impact on training convergence and solution quality.

The sampling approach which we leverage throughout the remainder of this work is to individ-

ually “perturb” the points of an initial fixed mesh with Gaussian noise. For each point in the mesh,

we add a small term ε sampled i.i.d. from the Normal distribution

ε ∼ N
(
μ = 0, σ =

Δt
τ

)
(1.8)

where Δt is the inter-point spacing of the original mesh, and τ is a hyperparameter that controls the

probability of sampling points in overlapping regions. This has the effect of randomly jittering the

training points, thereby reducing overfitting to the fixed mesh, while simultaneously enabling the

controlling of sample variance through the hyperparmater τ.

Figure 1.3 visualizes the effect of changing τ on the sampling distribution of grid points. We

see that as we increase τ the sampling distribution of the grid points becomes concentrated at their

original fixed centers. Conversely, as we reduce τ, the sampling distribution becomes more spread

across the grid and total sample variance increases. In our experiments, we set τ = 3 as we find

this adequately eliminates overfitting while significantly reducing the variability of the training loss,

leading to improved solution quality.

Reynolds-AveragedNavier Stokes Consider the Reynolds-Averaged Navier Stokes equa-

tion for the average velocity profile u of an incompressible fluid at position y in a one-dimensional

channel given by

ν
d2u
dy2
− d

dy

(
(κy)2

∣∣∣∣dudy
∣∣∣∣ dudy

)
− 1

ρ
dp
dx

= 0 (1.9)
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Figure 1.3: Effect of τ on the sampling distribuঞon of grid points for the “perturbed” sampling method. Each figure plots
the probability distribuঞon of ε centered at each point on a grid of integers from 1 to 10, for different values of τ.

where ν = 0.0055, κ = 0.41, ρ = 1 are given constants and dp
dx = −1 is a given pressure gradient.

Figure 1.4 shows the results of training a three layer neural network with 30 units per layer to

solve this problem. We compare three strategies for choosing points: a fixed mesh where the points

are always the same, uniform random sampling where every point is sampled i.i.d. from a uniform

distribution with support over the domain of the problem, and our perturbation method described

above which jitters the points from the grid according to a small Gaussian noise. We plot the train-

ing and validation losses as well as the predicted and ground truth solutions, providing the final

solution accuracy alongside the prediction.

With a fixed grid we see that the network clearly suffers from overfitting as the validation loss

diverges after step∼104. With uniform sampling the problem of overfitting is reduced, but the vari-

ability of the training and validation losses is greatly increased and the solution mean squared error

is higher than with a fixed grid. Using our perturbation-based approach with τ = 3, we simulta-

neously eliminate overfitting while significantly reducing the variability of the loss and increasing

10



(a) Fixed mesh.

(b) Uniform sampling.

(c) Perturbed sampling.

Figure 1.4: Comparison of three sampling strategies: fixed, uniform, and perturbed. The le[ panel plots the (unsuper-
vised) training (Train) and validaঞon (Val) losses, while the right panel shows the predicted neural network soluঞon
(NN) compared to the ground truth soluঞon obtained via a finite differences method (FD). We find that our perturbed
sampling yields the lowest mean squared error (MSE) while controlling for overfiমng.
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solution accuracy over either a fixed grid or uniform sampling. We observe this effect across a variety

of experiments, and apply this perturbed sampling method for all problems considered throughout

the remainder of this work.
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2
Generative Adversarial Networks: Learning

The Loss Function

We present a newmethod for solving differential equations with unsupervised neural networks

that is based on Generative Adversarial Networks (GANs)6. Given the plethora of potential loss

functions for the task of solving differential equations with neural networks, and the lack–to the

13



best of our knowledge–of any theoretical justification for a particular choice, we propose learning

the loss functionwith GANs. We show that this method, which we call Differential Equation GAN

(DEQGAN), can obtain multiple orders of magnitude lower mean squared errors than the classical

unsupervised neural network method based on L1, L2, and Huber loss functions.

2.1 Introduction

In the classic setting of data following a Gaussian noise model

y = x+ ε, ε ∼ N (0, σ2) (2.1)

there is clear theoretical justification, based on the maximum likelihood principle, for fitting models

with the squared error (L2 norm) loss function. In the case of deterministic differential equations,

however, there is no noise model and we lack formal justification for a particular choice of loss func-

tion among the multitude of options.

To circumvent this problem, we propose GANs for solving differential equations in a fully unsu-

pervised manner. We think of the discriminator model of the GAN as learning an appropriate loss

function for a given equation. Moreover, GANs have been shown to excel in scenarios where classic

loss functions, such as the mean squared error, struggle due to their inability to capture complex

spatio-temporal dependencies24,25,16. We present empirical results demonstrating that our method

can dramatically outperform the results obtained by classical methods for solving differential equa-

tions with unsupervised neural networks.

Our main contribution is a method for formulating the task of solving differential equations as

a GAN training problem. DEQGANworks by separating the differential equation into left-hand

side (LHS) and right-hand side (RHS), then training the generator to produce a LHS that is indistin-

guishable to the discriminator from theRHS. Experimental results show that our method produces

14



solutions which obtain multiple orders of magnitude lower mean squared errors (computed from

known analytic or numerical solutions) than comparable classical unsupervised methods which use

(squared) L2, L1, and Huber loss functions.

2.2 RelatedWork

Goodfellow et al. 6 introduced the idea of learning generative models with neural networks and an

adversarial training algorithm, called Generative Adversarial Networks (GANs). Since their seminal

paper, a plethora of authors have further developed this idea. Mirza &Osindero 29 proposed Con-

ditional GANs which introduce auxiliary conditioning information (e.g. class labels) to enable gen-

erative models of conditional distributions. Arjovsky et al. 1 introducedWGAN, a formulation of

GANs based on theWasserstein distance loss function, and showed that this improves training sta-

bility and output quality. Gulrajani et al. 8 introducedWGAN-GP, an extension toWGANwhich

approximately enforces a Lipschitz constraint on the discriminator (or “critic”) through a gradient

penalty instead of ad-hoc weight clipping. As an alternative toWGAN,Miyato et al. 30 proposed a

spectral normalization technique to enforce the Lipschitz constraint that outperformsWGAN on

some problems.

Our work distinguishes itself from other GAN-based approaches for solving differential equa-

tions by removing the dependence on using supervised training data (i.e. solutions of the equation).

Others have applied GANs to differential equations, but invariably use some solution data gathered

by simulation or experiment. Yang et al. 41 apply GANs to stochastic differential equations but in-

clude “snapshots” of ground-truth data for training. A project by students at Stanford36 employed

GANs to perform “turbulence enrichment” in a manner akin to that of super-resolution for images

proposed by Ledig et al. 25 . However, their method uses solution data when training the GAN. Our

method is the first to our knowledge to apply GANs to differential equations in fully unsupervised

15



settings.

2.3 Background

2.3.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs)6 are a type generative model that use two neural net-

works to induce a generative distribution p(x) of the data by formulating the inference problem as a

two-player, zero-sum game.

The generative model first samples a latent variable z ∼ N (0, 1), which is used as input into the

generatorG (e.g. a neural network). A discriminatorD is trained to classify whether its input was

sampled from the generator (i.e. “fake”) or from a reference data set (i.e. “real”). In practice, GANs

have performed exceptionally well at generating realistic samples from complex, high-dimensional

data25,16,42.

Informally, the process of training GANs proceeds by optimizing a minimax objective over the

generator and discriminator such that the generator attempts to trick the discriminator to classify

“fake” samples as “real”. Formally, one optimizes

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (2.2)

where x ∼ pdata(x) denotes samples from the empirical data distribution and pz ∼ N (0, 1) samples

in latent space. In practice, the optimization alternates between gradient ascent and descent steps for

D andG respectively.

16



2.3.2 Conditional GAN

Conditional GANs29 are a simple extension to the above formulation, whereby the discriminator

and/or generator are conditioned on an extra variable y. This could be any kind of auxiliary informa-

tion, such as class labels or data from other modalities. Formally, a conditional GAN optimizes

min
G

max
D

V(D,G) = Ex∼ pdata(x) [logD(x|y)] + Ez∼pz(z) [1− logD(G(z|y))] . (2.3)

For this paper, we found that conditioning the discriminator on points in the domain of the system

(e.g. the time variable t) can lead to improved training stability in some cases.

2.3.3 Two Time-Scale Update Rule

Heusel et al. 12 proposed the two time-scale update rule (TTUR) for training GANs, a method in

which the discriminator and generator are trained with separate learning rates. They showed that

their method led to improved performance and proved that, in some cases, TTUR ensures con-

vergence to a stable local Nash equilibrium. One intuition for TTUR comes from the potentially

different loss surface curvatures of the discriminator and generator. Allowing learning rates to be

tuned to a particular loss surface can enable more efficient gradient-based optimization. In practice

make use of TTUR throughout this paper as an instrumental lever when tuning GANs to reach

desired performance.

2.3.4 Wasserstein Loss with Gradient Penalty

Motivated by the tendency of discriminator gradients to explode when optimizing Equation 2.2,

Arjovsky et al. 1 propose the Wasserstein GAN (WGAN), a formulation of GANs in which the

Wasserstein-1 (or “EarthMover”) distance is used as the loss function instead of cross-entropy. The

17



WGAN value function is constructed using the Kantorovich-Rubinstein duality39 to obtain

min
G

max
D∈D

Ex∼preal(x) [D(x)]− Ez∼p(z)[D(G(z))] (2.4)

whereD is the set of 1-Lipschitz functions. The Lipschitz constraint is imposed to satisfy a strong

form of continuity, known as Lipschitz continuity, which bounds the derivatives of the discrimina-

tor and prevents gradient explosion. To enforce the Lipschitz constraint, Gulrajani et al. 8 propose

a gradient penalty (WGAN-GP) which is added to the loss function of the discriminator. This can

be interpreted as a soft constraint, since the term added to the loss does not strictly enforce that the

discriminator be 1-Lipschitz. The updated discriminator loss becomes

LD = Ez∼p(z)[D(G(z))]− Ex∼preal(x) [D(x)] + λEx̂∼Px̂

[
(||∇x̂D(x̂)||2 − 1)2

]
(2.5)

where x̂ ∼ Px̂ is the distribution of points uniformly sampled along straight lines between the data

distribution x ∼ preal(x) and the generator distributionG(z)with z ∼ p(z), and λ is a hyperparame-

ter controlling the relative influence of the gradient penalty on the loss function.

2.3.5 Spectral Normalization

Proposed byMiyato et al. 30 , Spectrally Normalized GAN (SN-GAN) is an alternative method for

controlling exploding discriminator gradients when optimizing Equation 2.2 that leverages a novel

weight normalization technique.

The key idea is to control the Lipschitz constant of the discriminator by constraining the spec-

tral norm of each layer in the discriminator. Specifically, the authors propose dividing the weight

matricesWi of each layer i by their spectral norm σ(Wi)
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WSN,i =
Wi

σ(Wi)
(2.6)

where

σ(Wi) = max
∥hi∥2≤1

∥Wihi∥2 (2.7)

and hi denotes the input to layer i. The authors prove that this normalization technique bounds the

Lipschitz constant of the discriminator above by 1, thus strictly enforcing the 1-Lipshcitz constraint

on the discriminator. In our experiments, adopting the SN-GAN formulation leads to even better

performance thanWGAN-GP.

2.3.6 Residual Connections

He et al. 10 showed that adding residual connections improved training of deep neural networks.

We employ residual connections to our deep networks as they allow gradients to more easily flow

through the models and thereby reduce numerical instability. Residual connections augment a typi-

cal activation with the identity operation

y = F(x,Wi) + x (2.8)

whereF is the activation function, x is the input to the unit,Wi are the weights, and y is the output

of the unit. This acts as a “skip connection”, allowing inputs and gradients to forego the nonlinear

component.
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2.4 Differential Equation GAN

Here we present our method, Differential Equation GAN (DEQGAN), which trains a GAN in

a fully unsupervised manner (without access to ground-truth solutions during training) to solve

differential equations. To do this, we rearrange the differential equation such that the left-hand side

LHS contains all of the terms which depend on the generator (e.g. Ψ̂, ΔΨ̂, Δ2Ψ̂, etc.), and the right-

hand sideRHS contains only constants (e.g. zero).

Then we sample points from the domain t ∼ D and use them as input to a generatorG(t), which

produces candidate solutions Ψ̂. We adjust Ψ̂ for initial or boundary conditions according to the

analytic adjustment function Φ presented in Section 1.1. Then we construct the LHS from the

differential equation F using automatic differentiation

LHS = F
(
t, Ψ̂(t),ΔΨ̂(t),Δ2Ψ̂(t)

)
(2.9)

and setRHS to its appropriate value (in our examples,RHS = 0).

From here, training proceeds in a manner similar to traditional GANs. We update the weights of

the generatorG and discriminatorD according to the gradients

ηG = ∇θg
1
m

m∑
i=1

log
(
1−D

(
LHS(i)

))
(2.10)

ηD = ∇θd
1
m

m∑
i=1

[
logD

(
RHS(i)

)
+ log

(
1−D

(
LHS(i)

))]
(2.11)

where LHS(i) is the output ofG
(
t(i)

)
after adjusting for initial or boundary conditions and con-

structing the LHS from F. Note that we perform stochastic gradient descent forG (gradient steps

∝ −ηG) and stochastic gradient ascent forD (gradient steps∝ ηD). We provide a schematic repre-
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Figure 2.1: Schemaঞc representaঞon of DEQGAN. We perturb points t from the mesh and input them to a generatorG,
which produces candidate soluঞons Ψ̂. Then we analyঞcally adjust these soluঞons according toΦ and apply automaঞc
differenঞaঞon to construct LHS from the differenঞal equaঞon F. RHS and LHS are passed to a discriminatorD,
which is trained to classify them as “real” and “fake” respecঞvely.

sentation of DEQGAN in Figure 2.1 and detail the training steps in Algorithm 1.

Informally, our algorithm trains a GAN by setting the “fake” component to be the LHS (in our

formulation, the residuals of the equation), and the “real” component to be theRHS of the equa-

tion. This results in a GAN that learns to produce solutions that make LHS indistinguishable from

RHS, thereby approximately solving the differential equation.

A subtle yet important note is that training can be unstable if LHS andRHS are not chosen

properly. Specifically, we find that training fails ifRHS is a function of the generator. For example,

consider the equation ẍ+ x = 0. If we set LHS = ẍ andRHS = −x, then RHS is a function of the

generator and will be constantly changing as the generator is updated throughout training, and DE-

QGANwill become exceedingly unstable. We can fix this, however, by simply setting LHS = ẍ + x

and takingRHS = 0.

Our intuition for why this happens is that ifRHS depends on the outputs of the generator, the

“real” data distribution pdata(x) (from Equation 2.2) changes as the generator weights are updated

throughout training. If the distribution pdata(x) is constantly changing, the discriminator will not

have a reliable signal for learning to classify “real” from “fake”, which violates a core assumption of

traditional GANs. By settingRHS = 0, we resolve the problem by effectively setting the “real”

distribution to be the fixed Dirac delta function pdata(x) = δ(0). For the examples in this paper, we
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Algorithm 1DEQGAN
Input: Differential equation F, generatorG(·; θg), discriminatorD(·; θd), mesh t ofm
points with spacing Δt, perturbation precision τ, analytic adjustment function Φ, total
stepsN, learning rates αG, αD, Adam17 optimizer parameters βG1, βG2, βD1, βD2
for i = 1 toN do
for j = 1 tom do

Perturb j-th point in mesh t(j)s = t(j) + ε, ε ∼ N (0, Δt
τ )

Forward pass Ψ̂ = G(t(j)s )

Analytic adjustment Ψ̂′
= Φ(Ψ̂) (Equation 1.7)

Compute LHS(j) = F(t, Ψ̂′
,∇Ψ̂′

,∇2Ψ̂′
), setRHS(j) = 0

end for
Compute gradients ηG, ηD (Equation 2.10 & 2.11)
Update generator θg ← Adam(θg,−ηG, αG, βG1, βG2)
Update discriminator θd ← Adam(θd, ηD, αD, βD1, βD2)

end for
Output: G

move all terms of the differential equation to LHS and setRHS = 0.*

2.5 Experiments

We run experiments on several differential equations of increasing complexity, comparing DEQ-

GAN to the classical unsupervised neural network method using squared L2 (i.e. mean squared

error)†, L1, and Huber14 loss functions. Figure 2.2 plots the L2, L1, and Huber loss functions for

reference. We report the mean squared errors of the solutions produced by each method by using

known solutions obtained either analytically or through standard numerical methods, but do not

use these solution data for training. We do not compare to traditional numerical methods as others

have substantively performed this comparison20,22,9,34,32,28.

*Further discussion of this point is provided in Section 3.2.1.
†We use the term L2 to avoid conflating the loss function being used, which is the mean squared error on

the unsupervised problem of minimizing the differential equation residuals, with the final evaluation metric,
which is the mean squared error of the predicted solution computed against the known ground truth.
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Figure 2.2: Comparison of L2, L1, and Huber loss funcঞons. The Huber loss is equal to L2 for e ≤ 1 and to L1 for
e > 1.

We use feed-forward neural networks with residual connections throughout our experiments for

both the generatorG and discriminatorD, and train them with the Adam optimizer17, alternat-

ing equally betweenG andD updates. For all problems, we sample points from the domain (a grid

or mesh of points) with a small Gaussian noise perturbation, as in Algorithm 1. The exact prob-

lem specifications and hyperparameter settings used, as well as the results obtained from non-GAN

training, are provided in Appendix A.

We note that deterministic differential equations do not exhibit aleatoric uncertainty and that

all errors we observe are therefore epistemic. Given that neural networks are universal function ap-

proximators, one may initially expect to obtain arbitrarily low error. The reason we do not observe

this is two-fold. First, the universal approximation theorem holds only in the limit of infinite-width

networks. Since we are constrained to implementing finite-width models, it may be that our neural

networks lacks representational capacity and the problem requires a wider or deeper network. Sec-

ond, our neural network loss surfaces are non-convex, and stochastic gradient descent is unlikely to

reach globally optimal solutions in this scenario. Our training likely reaches local optima, or oscil-

lates about them, and the gap between local and global optimality may further introduce epistemic

error.
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Figure 2.3: Visualizaঞon of DEQGAN training for the exponenঞal decay problem. The le[-most figure plots the mean
squared error vs. iteraঞon. To the right, we plot the value of the generator (G) and discriminator (D) losses at each
iteraঞon. Right of this we plot the predicঞon of the generator x̂ and the true analyঞc soluঞon x as funcঞons of ঞme t.
The right-most figure plots the absolute value of the residual of the predicted soluঞon F̂.

2.5.1 Exponential Decay

Consider a model for population decay x(t) given by the exponential differential equation

ẋ(t) + x(t) = 0, (2.12)

with initial condition x(0) = 1. The ground truth solution x(t) = e−t can be obtained analytically

through integration. We reiterate, however, that our method is fully unsupervised and does not

make use of this solution data during training. We simply use the ground truth solutions to report

mean squared errors of predicted solutions.

To set up the problem for DEQGAN, we define LHS = ẋ + x andRHS = 0. We iteratively

sample a collection of points from the grid ts ∼ T and perform a gradient step separately for the

generator and discriminator on each sample (i.e. mini-batch).

In Figure 2.3 we present the results of training DEQGAN on this problem. We observe that the

generator and discriminator losses fluctuate significantly to start training, but eventually reach a

stable equilibrium. The mean squared error fluctuates for both the training and validation batches,

yet converges to a highly accurate solution of∼10−11. Visually, the prediction of the generator x̂
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Figure 2.4: Mean squared errors vs. iteraঞon (step) for DEQGAN, L1, L2, and Huber loss for the exponenঞal decay
equaঞon. We perform ten randomized trials and plot the median (bold) and (2.5, 97.5) percenঞle range (shaded). We
smooth the values using a simple moving average with window size 50.

accurately mimics the analytical solution, and the residuals of the equation F̂ are small throughout

the domain.

To compare against the classical neural network method, in Figure 2.4 we run ten trials varying

the random seed used to sample batches and train both DEQGAN and the classical method with

L1, L2 and Huber loss functions. We use the same hyperparameters across all experiments and plot

the median and (2.5, 97.5) percentile interval of the mean squared error of the solution at each it-

eration. We see that DEQGAN reaches orders of magnitude lower mean squared errors than the

classical non-GANmethods‡. We observe that the variance of the solution accuracy is, however,

‡Note that the results are obtained using the best hyperparameters found for DEQGAN through a ran-
dom search procedure. In Appendix A.3, we present results obtained after tuning the classical non-GAN
methods for comparison. We do not observe a meaningful difference as DEQGAN still obtains multiple
orders of magnitude lower mean squared errors than classical methods.
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Figure 2.5: Visualizaঞon of DEQGAN training for the simple harmonic oscillator problem. The le[-most figure plots the
mean squared error vs. step (iteraঞon) count. To the right of this, we plot the value of the generator (G) and discrimi-
nator (D) losses for each step. Right of this we plot the predicঞon of the generator x̂ and the true analyঞc soluঞon x as
funcঞons of ঞme t. The right-most figure plots the absolute value of the residual of the predicted soluঞon F̂.

notably larger for DEQGAN than the classical method across all loss functions. Nevertheless, this

figure demonstrates that it is possible to significantly outperform the classical method with DEQ-

GAN.

2.5.2 Simple Harmonic Oscillator

Now consider the motion of an oscillating body x(t), which can be modeled by the simple har-

monic oscillator differential equation

ẍ(t) + x(t) = 0, (2.13)

with initial conditions x(0) = 0, and ẋ(0) = 1. This differential equation can be solved analytically

and has an exact solution x(t) = sin t.

Here we set LHS = ẍ + x andRHS = 0 and proceed as before. We sample points from a grid,

compute gradients, and perform optimization steps for the generator and discriminator separately

on each batch.

Figure 2.5 plots the results of training DEQGAN on this problem. In this case, we observe that

the generator and discriminator losses quickly converge to a stable equilibrium. We see that the
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Figure 2.6: Mean squared errors vs. iteraঞon for DEQGAN, L1, L2, and Huber loss for the simple harmonic oscillator
equaঞon. We perform ten randomized trials and plot the median (bold) and (2.5, 97.5) percenঞle range (shaded). We
smooth the values using a simple moving average with window size 50.

mean squared error decreases rapidly then plateaus and approaches∼10−7. The predicted solution

x̂ is indistinguishable from the true solution, and the residuals of the predicted solution are small

across the domain, albeit increasing slightly near the right edge of the domain (t ≈ 2π).

Comparing to the classical neural network method, in Figure 2.6 we run ten randomized trials,

with different random seeds for mini-batch sampling, and compute the mean squared error of the

solution from each of the four methods (L1, L2, Huber, DEQGAN) at each iteration. We observe

that our GANmethod matches the performance of the classical methods initially, but by step∼300

outperforms the non-GANmethods by orders of magnitude in terms of solution accuracy. DEQ-

GAN eventually converges to an accuracy of∼10−7, while the best of the classical methods reaches

only∼10−3. We note that DEQGAN exhibits higher variance in solution accuracy, but nevertheless

handily outperforms the competitors.
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Figure 2.7: Visualizaঞon of DEQGAN training for the nonlinear oscillator problem. The le[-most figure plots the mean
squared error vs. step (iteraঞon) count. To the right of this, we plot the value of the generator (G) and discriminator (D)
losses for each step. Right of this we plot the predicঞon of the generator x̂ and the true analyঞc soluঞon x as funcঞons
of ঞme t. The right-most figure plots the absolute value of the residual of the predicted soluঞon F̂.

2.5.3 Nonlinear Oscillator

Further increasing the complexity of the differential equations being considered, let us focus on a

less idealized oscillating body subject to additional forces, whose motion x(t)we can described by

the nonlinear oscillator differential equation

ẍ(t) + 2βẋ(t) + ω2x(t) + φx(t)2 + εx(t)3 = 0, (2.14)

with β = 0.1, ω = 1, φ = 1, ε = 0.1 and initial conditions x(0) = 0 and ẋ(0) = 0.5. This equation

does not admit an analytical solution; instead, we use the fourth-order Runge–Kutta numerical

method to obtain ground truth solutions.

As before, we proceed by setting LHS = ẍ + 2βẋ + ω2x + φx2 + εx3 = 0 andRHS = 0, and

iteratively perform gradient steps to optimize the generator and discriminator separately on each

mini-batch of time points sampled from a grid, as in Algorithm 1.

Figure 2.7 plots the results obtained from training DEQGAN on this nonlinear oscillator differ-

ential equation. We see that the generator and discriminator very quickly reach a stable equilibrium,

and that the prediction mean squared error decreases to∼10−8. We note that the mean squared
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Figure 2.8: Mean squared errors vs. iteraঞon for DEQGAN, L1, L2, and Huber loss for the nonlinear oscillator equaঞon.
We perform ten randomized trials and plot the median (bold) and (2.5, 97.5) percenঞle range (shaded). We smooth the
values using a simple moving average with window size 50.

error on the training set (which is the set of randomly sampled points) fluctuates sharply after step

∼1000, but the validation set (which is the set of fixed points) remains smooth. Nevertheless, the

predicted solution is again indistinguishable from the ground truth, and the residuals of the equa-

tion from the predicted solution are small throughout the domain (increasing slightly near the right

edge t ≈ 4π).

To compare against the classical unsupervised neural network method, Figure 2.8 shows the re-

sults of ten trials where the grid sampling randomization is altered, and plots the mean squared error

as a function of iteration for our DEQGANmethod and the classical methods with L1, L2, and

Huber loss functions. DEQGAN again outperforms the classical methods by orders of magnitude,

reaching a median mean squared error∼10−8, with a modest variability of∼10−1 measured by the

(2.5, 97.5) percentile interval.
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Figure 2.9: Visualizaঞon of DEQGAN training for the SIR system of equaঞons. The le[-most figure plots the mean
squared error vs. step (iteraঞon) count. To the right of this, we plot the value of the generator (G) and discriminator (D)
losses for each step. Right of this we plot the predicঞons of the generator Ŝ, Î, R̂ and the true analyঞc soluঞons S, I,
R as funcঞons of ঞme t. The right-most figure plots the absolute value of the residuals of the predicted soluঞon F̂j for
each equaঞon j.

2.5.4 SIR EpidemiologicalModel

Given the recent outbreak and pandemic of novel coronavirus (COVID-19)40, we consider an epi-

demiological model of infectious disease spread given by a system of ordinary differential equations.

Specifically, consider the Susceptible S(t), Infected I(t), RecoveredR(t)model for the spread of an

infectious disease over time t. The model is given by a system of three ordinary differential equations

dS
dt

= −βIS
N

(2.15)

dI
dt

= β
IS
N
− γI (2.16)

dR
dt

= γI (2.17)

where β = 3, γ = 1 are given constants related to the infectiousness of the disease,N = S + I + R

is the (constant) total population, and the system is subject to initial conditions S0 = 0.99, I0 =

0.01,R0 = 0.
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Figure 2.10: Mean squared errors vs. iteraঞon for DEQGAN, L1, L2, and Huber loss for the SIR system of equaঞons.
We perform ten randomized trials and plot the median (bold) and (2.5, 97.5) percenঞle range (shaded). We smooth the
values using a simple moving average with window size 50.

Here we solve the problem in a similar manner as above, but with an important difference. Be-

cause the SIR model is given as a system of equations, we set LHS to be the vector

LHS =
[
dS
dt

+ β
IS
N
,
dI
dt
− β

IS
N

+ γI,
dR
dt
− γI

]T
(2.18)

andRHS = [0, 0, 0]T. Then instead of a scalar, the generator outputs a vector ˆLHS, and the dis-

criminator receives this vector as input. As before, we sample points from a grid and perform gradi-

ent steps on each mini-batch for the generator and discriminator separately.

We present the results of training DEQGAN to solve this system of differential equations in Fig-

ure 2.9. We observe that the generator and discriminator losses initially fluctuate substantially, but

quickly reach a stable equilibrium. We note that the mean squared error of the solutions on both
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the training and validation data decreases steadily, albeit with some fluctuation on the (randomized)

training data as we approach the performance plateau. The generator is able to produce accurate

solutions for all three equations simultaneously and the residuals of the predicted solution are small.

To compare to the classical neural network methods, we perform ten randomized experiments

where we change the random seed used for sampling mini-batches. Figure 2.10 plots the mean

squared errors for each iteration of DEQGAN as well as the classical methods with L1, L2, and Hu-

ber loss functions. We see that DEQGAN significantly outperforms the classical methods. DEQ-

GAN’s mean squared error decreases steadily until plateauing around∼10−5. The solution variance

is low, suggesting that the GAN reaches stable equilibria. The classical loss functions unanimously

perform poorly for this system as they collapse to the trivial solution.§ This is a big win for DEQ-

GAN since being able to accurately solve the system at the given initial conditions (starting with

a small proportion of infected people I0) is crucial for modeling infectious diseases in a real-world

setting.

§See Figure A.4 in the Appendix. It is due to the extremeness of the initial conditions (S0 being close to 1
and I0 close to 0) that the classical methods fail and collapse to the trivial solution. If we set S0 and I0 to less
extreme values (e.g. S0 = 0.7 and I0 = 0.3) the classical methods can solve the system.
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3
Discussion

3.1 Instability

A point that we have not yet explicitly addressed is the apparent instability of the DEQGAN train-

ing algorithm and how it compares to the classical methods. In fact, the instability of GANs is not

a new problem and much work has been dedicated to improving the stability and convergence of

GANs1,8,3,29. In our experiments, we find that the specific initialization of the generator and dis-
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Figure 3.1: Mean squared errors vs. iteraঞon for DEQGAN, L1, L2, and Huber loss for the exponenঞal decay equaঞon.
We perform ten randomized trials, without fixing the iniঞal model weights, and plot the median (bold) and (2.5, 97.5)
percenঞle range (shaded). We smooth the values using a simple moving average with window size 50.

criminator weights can have a substantial effect on the final performance of DEQGAN.

For example, consider Figure 3.1 which shows the results of the ten randomized trials of the ex-

ponential decay experiment, but this time without fixing the random initialization of the model

weights, as was done in Figure 2.4. We observe a large increase in the variability of solution accuracy,

approximately∼6 orders of magnitude in the (2.5, 97.5) percentile interval, compared to the re-

sults with fixed model initializations. While the classical methods also exhibit higher variability, their

increase is much smaller.

We observe this effect across our experiments. The solution that we adopt is to fix the initial

model weights when tuning hyperparameters for DEQGAN, and to keep the same weight initial-

ization thereafter. Maintaining the same initial weights, even after randomization of mini-batches,

appears to significantly reduce the problem of instability.
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Figure 3.2: Parallel plot showing the results of 500 DEQGAN experiments on the exponenঞal decay equaঞon. The
colors represent the different random seeds used to iniঞalize model weights. We filter the results (non-selected lines
appear gray) to highlight experiments achieving mean squared error≤ 10−8. The mean squared error is plo�ed on a
log10 scale.

To further illustrate the relationship between performance, hyperparameters, and initial model

weights, Figure 3.2 plots the results of 500 DEQGAN experiments for the exponential decay equa-

tion. For each experiment, we uniformly at random select model weight initialization random seeds

as integers from the range [0, 9], as well as separate learning rates* for the discriminator and gener-

ator in the range [10−6, 10−2], and record the final mean squared error on the validation set after

running DEQGAN training for 500 steps.

In Figure 3.2, each line represents a combination of model weight initialization random seed,

learning rate hyperparameters, and final (log) mean squared error of a single experiment. We note

that the results as a whole exhibit considerable variation in final mean squared error. Interestingly,

however, filtering on experiments achieving lowmean squared errors (≤ 10−8) demonstrates that

*The only tuning of DEQGAN hyperparameters on the exponential decay equation was for the discrimi-
nator and generator learning rates.
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Figure 3.3: Parallel plot showing the results of 500 DEQGAN experiments on the exponenঞal decay equaঞon. The
colors represent the different random seeds used to iniঞalize model weights. We filter the results (non-selected lines
appear gray) to highlight the experiments with relaঞvely high generator learning rates (∼10−2 to∼7−3) and low dis-
criminator learning rates (∼3−3 to∼3−5). The mean squared error is plo�ed on a log10 scale.

hyperparameter settings exist, for each of the model weight initialization seeds, that lead to highly

accurate DEQGAN solutions.

We also observe a pattern in the hyperparameters which produce the low mean squared error

experiments. We note that relatively high generator learning rates and low discriminator learning

rates lead to the best DEQGAN performance, across different model initialization seeds. In Figure

3.3, we filter on high generator (∼10−2 to∼7−3) and low discriminator (∼3−3 to∼3−5) learning

rates to show this pattern. We see that, while the mean squared error of a few experiments does not

fall in the≤ 10−8 range, the majority of trials with high generator and low discriminator learning

rates achieve relatively low mean squared errors, and this pattern holds across the choices of random

weight initialization seed.

While DEQGAN is capable of performing well across all of the initial model weights shown here,
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our results confirm that optimizing DEQGAN is rather sensitive to the selection of hyperparam-

eters. Interestingly, we observe a pattern in the discriminator and generator learning rates which

seems to lead to better performance. In general, GANs lack formal guarantees of convergence and

we look forward to further developments that enable GANs to be trained with greater stability and,

in particular, DEQGAN to achieve even better performance.

3.2 Prior Formulations

The formulation of DEQGAN as presented in Chapter 2 is the result of many trials and errors.

Here we detail some of the methods we tried which we have variously found to be either unsuitable

or sub-optimal for training GANs to solve differential equations in an unsupervised manner.

3.2.1 Balancing

Initially we imagined that any reasonable partitioning of the differential equation into LHS and

RHSwould suffice for training DEQGAN. This showed promise, as initially we were able to signifi-

cantly outperform the classical neural network method on the exponential decay equation ẋ+x = 0.

We set LHS = ẋ andRHS = −x, and proceeded as detailed in Algorithm 1 to train DEQGAN.

As mentioned, we were able to obtain results which outperformed the classical methods we used as

baselines. However, upon experimenting with another equation, the simple oscillator ẍ+ x = 0, we

were flummoxed to find that it simply did not work, however many sets of hyperparameters we tried.

We believe that this is because when we allow theRHS (which, for DEQGAN, is considered

the “real” data in the GAN terminology) to vary with the generator, then the discriminator model

has great difficulty in classifying real from fake. In classic GAN training, the real data come from a

fixed distribution, allowing the discriminator to learn to classify what is real and what is not. When

RHS varies with the generator, the real data are no longer fixed, and the GAN training becomes
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exceedingly unstable, virtually incapable of convergence beyond the exponential decay equation.

The solution we adopt is to move all terms to the LHS and setRHS = 0.

3.2.2 Semi-Supervised

In an attempt to counteract the difficulty we found in training DEQGAN for the simple oscillator,

noted above, we tried adding some supervision in the form of “observer” solution data points. In ad-

dition to the unsupervised training signal from the discriminator, we added another loss term to the

generator optimization which included actual solution values, and were compared to predictions

either through a second discriminator or a point-wise loss function (we tried both).

This had the effect of constraining the space of possible generator candidate solutions by im-

posing a soft constaint that the solutions be close to ground truth. While this indeed improved the

results, we made a serendipitous discovery, as noted above, that simply moving all terms to the LHS

and settingRHS = 0 greatly improved the convergence and performance of DEQGAN, and were

able to train in a fully unsupervised manner. We experimented with semi-supervised training even

after this discovery and found that, to our surprise, the fully unsupervised method led to greater

solution accuracy than semi-supervised. This is possibly due to the fact that unsupervised solu-

tions require adhering to the differential equation, while supervised ones do not†. However, this

observation may only hold for the relatively simple examples considered in our experiments, and

semi-supervised training may be useful for more difficult equations.

3.2.3 Conditional GAN

In tandem with the attempts to improve training convergence of our original “balancing” formula-

tion of DEQGANwith semi-supervised training, we hypothesized that conditioning the discrimina-

†Supervised solutions simply fit the given data, while unsupervised solutions must obey the differential
equation by satisfying the relationship between the solution, its derivatives, and possibly other terms.
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tor on the grid points (e.g. t) which produced a given real or fake solution could help the discrimina-

tor classify real from fake and thus provide a superior training signal for the generator and improve

DEQGAN performance.

While we did observe this to be the case for the balancing formulation, upon re-formulating the

problem to, in essence, minimize the residuals with LHS = F
(
x, Ψ̂(x),ΔΨ̂(x),Δ2Ψ̂(x)

)
and

RHS = 0, we were able to remove this additional complexity fromDEQGAN.

3.2.4 Wasserstein GAN

Prior to implementing spectral normalization in the discriminator, we followed the common prac-

tice of adopting the Wasserstein GAN1 formulation with gradient penalty8 (WGAN-GP, see Sec-

tion 2.3) to combat optimization difficulties of the vanilla GAN.We found that this clearly en-

hanced our results and improved training stability. However, we discovered that spectral normaliza-

tion led to even greater performance and required less tuning and fewer iterations to reach conver-

gence, so we dispatched withWGAN-GP and used spectral normalization instead for all DEQGAN

training.
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4
Conclusion

Inspired by the line of research studying approaches for solving differential equations with unsu-

pervised neural networks, and the lack of theoretical justification for a particular choice of loss func-

tion, we have presented a newmethod which leverages GAN-based adversarial training to learn

the loss function in a fully unsupervised manner. We have shown empirically that our our method,

which we call Differential Equation GAN (DEQGAN), can obtain multiple orders of magnitude

lower mean squared errors than the classical unsupervised neural network method with (squared)
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L2, L1, and Huber loss functions. We analyzed the stability of our approach and found it to be sensi-

tive to hyperparameters, requiring careful tuning to reach desired performance, and discussed prior

formulations to provide further insight into the development of our method.

In addition, we presented a simple point sampling technique which individually “perturbs”

points from a fixed mesh according to i.i.d. Gaussian noise. We showed that this method can reduce

overfitting while rendering explicit control over sample variance, enabling more stable optimization

of the unsupervised loss and lower solution mean squared errors.

To further develop these ideas, future work could run experiments with more complex, poten-

tially stochastic, differential equations. Additional robustness studies of training stability across

varying initial conditions and experiments could also be useful. And investigations into more so-

phisticated sampling techniques, such as “active learning” approaches, in which points are sampled

in proportion to their contribution to the loss function, may prove fruitful.

We are motivated by the many potential benefits of learning solutions to differential equations

with unsupervised neural networks. Among the various promising developments in the literature,

from neural network’s advantage in high-dimensional settings to their potential superiority in obey-

ing physical constraints, we hope that this work helps advance our understanding of the importance

of loss functions and point sampling in obtaining highly accurate solutions to differential equations

with unsupervised neural networks.

The deep learning revolution is upon us, and it seems that an increasing number of problems

can be approached with the help of neural networks. We look to the future with great excitement,

anticipating many innovative approaches that leverage neural networks to solve problems in science,

engineering, and our world at large.
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A
A.1 Hyperparameters

We performed random search to tune the hyperparameters of the DEQGANmethod for each dif-

ferential equation. We thank the creators of the Ray-Tune package26 for the ease with which we

were able to perform hyperparameter tuning using their software.
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Table A.1: Hyperparameter Seমngs for DEQGAN: Exponenঞal Decay

Hyperparameter Value

Num. Iterations 500
Num. Grid Points 100
SamplingMethod Perturb
Grid Boundary (0, 10)
GUnits 20
G Layers 2
DUnits 20
D Layers 2
G Learning Rate 0.01785332956321333
D Learning Rate 0.0025312451764215923
GOptimizer Adam(Β1 = 0.9,Β2 = 0.999)
DOptimizer Adam(Β1 = 0.9,Β2 = 0.999)
GActivations Tanh
DActivations Tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True
Learning Rate Decay None
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Table A.2: Hyperparameter Seমngs for DEQGAN: Simple Oscillator

Hyperparameter Value

Num. Iterations 600
Num. Grid Points 1000
SamplingMethod Perturb
Grid Boundary (0, 2π)
GUnits 20
G Layers 2
DUnits 20
D Layers 2
G Learning Rate 0.006397509258273433
D Learning Rate 0.0001715952321721463
GOptimizer Adam(Β1 = 0.9,Β2 = 0.999)
DOptimizer Adam(Β1 = 0.9,Β2 = 0.999)
GActivations Tanh
DActivations Tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True
Learning Rate Decay None
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Table A.3: Hyperparameter Seমngs for DEQGAN: Nonlinear Oscillator

Hyperparameter Value

Num. Iterations 3000
Num. Grid Points 400
SamplingMethod Perturb
Grid Boundary (0, 4π)
GUnits 20
G Layers 2
DUnits 20
D Layers 2
G Learning Rate 0.005801628839417561
D Learning Rate 0.0007291873762250555
GOptimizer Adam(Β1 = 0.10244627,Β2 = 0.76328835)
DOptimizer Adam(Β1 = 0.54142685,Β2 = 0.67750577)
GActivations Tanh
DActivations Tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True
Learning Rate Decay Exp(γ = 0.9962712909742575)
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Table A.4: Hyperparameter Seমngs for DEQGAN: SIR Model

Hyperparameter Value

Num. Iterations 5000
Num. Grid Points 200
SamplingMethod Perturb
Grid Boundary (0, 10)
GUnits 20
G Layers 2
DUnits 20
D Layers 2
G Learning Rate 0.006429803531841584
D Learning Rate 0.0096471038124105949
GOptimizer Adam(Β1 = 0.14666949,Β2 = 0.93261048)
DOptimizer Adam(Β1 = 0.51750004,Β2 = 0.85405624)
GActivations Tanh
DActivations Tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True
Learning Rate Decay Exp(γ = 0.9976839429505154)
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A.2 Non-GANTraining

Here we present training visualizations for each of the non-GANmethods (L2, L1, Huber) which

we compared with in Chapter 2.

(a) Squared L2 (mean squared error) loss.

(b) L1 loss.

(c) Huber loss.

Figure A.1: Visualizaঞon of fully-connected neural networks trained with various losses to solve the exponenঞal decay
differenঞal equaঞon. The le[-most figures plot the mean squared error vs. step (iteraঞon) count. To the right of this,
we plot the unsupervised loss for each step. Right of this we plot the predicঞon of the model x̂ and the true analyঞc
soluঞon x as funcঞons of ঞme t. The right-most figures plot the absolute value of the residual of the predicted soluঞon
F̂.
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(a) Squared L2 (mean squared error) loss.

(b) L1 loss.

(c) Huber loss.

Figure A.2: Visualizaঞon of fully-connected neural networks trained with various losses to solve the simple oscillator
differenঞal equaঞon. The le[-most figures plot the mean squared error vs. step (iteraঞon) count. To the right of this,
we plot the unsupervised loss for each step. Right of this we plot the predicঞon of the model x̂ and the true analyঞc
soluঞon x as funcঞons of ঞme t. The right-most figures plot the absolute value of the residual of the predicted soluঞon
F̂.
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(a) Squared L2 (mean squared error) loss.

(b) L1 loss.

(c) Huber loss.

Figure A.3: Visualizaঞon of fully-connected neural networks trained with various losses to solve the nonlinear oscillator
differenঞal equaঞon. The le[-most figures plot the mean squared error vs. step (iteraঞon) count. To the right of this,
we plot the unsupervised loss for each step. Right of this we plot the predicঞon of the model x̂ and the true analyঞc
soluঞon x as funcঞons of ঞme t. The right-most figures plot the absolute value of the residual of the predicted soluঞon
F̂.
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(a) Squared L2 (mean squared error) loss.

(b) L1 loss.

(c) Huber loss.

Figure A.4: Visualizaঞon of fully-connected neural networks trained with various losses to solve the SIR system of
differenঞal equaঞons. The le[-most figures plot the mean squared error vs. step (iteraঞon) count. To the right of this,
we plot the unsupervised loss for each step. Right of this we plot the predicঞons of the model Ŝ, Î, R̂ and the true
analyঞc soluঞons S, I,R as funcঞons of ঞme t. The right-most figures plot the absolute value of the residual of the
predicted soluঞon F̂j for each equaঞon j.
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A.3 Non-GANTuning

Here we present DEQGAN vs. non-GAN performance comparisons obtained from tuning the

non-GANmethods with a random search procedure similar to the one used for DEQGAN.

Figure A.5: Mean squared errors vs. iteraঞon for DEQGAN, L1, L2, and Huber loss for the exponenঞal decay equaঞon,
with separate hyperparameters tuned for the non-GAN methods. We perform ten randomized trials and plot the median
(bold) and (2.5, 97.5) percenঞle range (shaded). We smooth the values using a simple moving average with window
size 50.
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Figure A.6: Mean squared errors vs. iteraঞon for DEQGAN, L1, L2, and Huber loss for the simple harmonic oscillator
equaঞon, with separate hyperparameters tuned for the non-GAN methods. We perform ten randomized trials and plot
the median (bold) and (2.5, 97.5) percenঞle range (shaded). We smooth the values using a simple moving average with
window size 50.
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Figure A.7: Mean squared errors vs. iteraঞon for DEQGAN, L1, L2, and Huber loss for the nonlinear oscillator equaঞon,
with separate hyperparameters tuned for the non-GAN methods. We perform ten randomized trials and plot the median
(bold) and (2.5, 97.5) percenঞle range (shaded). We smooth the values using a simple moving average with window
size 50.
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Figure A.8: Mean squared errors vs. iteraঞon for DEQGAN, L1, L2, and Huber loss for the SIR system of equaঞons, with
separate hyperparameters tuned for the non-GAN methods. We perform ten randomized trials and plot the median
(bold) and (2.5, 97.5) percenঞle range (shaded). We smooth the values using a simple moving average with window
size 50.
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