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Differential Equations

Differential equations are of significant scientific and engineering interest.

@ They relate quantities to rates of change (i.e. derivatives)
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Differential Equations

Differential equations are of significant scientific and engineering interest.
@ They relate quantities to rates of change (i.e. derivatives)
@ Applied to physics, chemistry, biology, engineering, economics

@ However, equations of practical interest are generally not analytically
solvable

@ Instead, numerical methods compute approximate solutions over a
discrete mesh or grid
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Example: Fluid Flow

Credit: Pavel Dobryakov
https://paveldogreat.github.io/WebGL-Fluid-Simulation/

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 5/56


https://paveldogreat.github.io/WebGL-Fluid-Simulation/

Example: Infectious Disease

Flattening the Curve

1.0 4
~. ‘\\\\

< 0.8 ~ —
© ~
=
& N -
2 0.6 .. —— Susceptible
o \\ A AN
a VWX \\ AN — Infected
]
c Recovered
O 0.4+ i
B Capacity
o m—————.
R SYSSRSRY /7,150 > "V N G N ——
o
j—
o 0.2 1

0.0 4

0 2 4 6 8 10
Time

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 6/56



Why Neural Networks?

Traditional numerical methods perform well and the theory for stability
and convergence is well-established. Why use neural networks? Some
potential advantages:

@ Remove reliance on finely-crafted grids which suffer the “curse of
dimensionality”; can be more tractable in high-dimensional settings
(Sirignano & Spiliopoulos, 2018; Raissi, 2018; Han et al., 2017)
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Why Neural Networks?

Traditional numerical methods perform well and the theory for stability
and convergence is well-established. Why use neural networks? Some
potential advantages:

@ Remove reliance on finely-crafted grids which suffer the “curse of
dimensionality”; can be more tractable in high-dimensional settings
(Sirignano & Spiliopoulos, 2018; Raissi, 2018; Han et al., 2017)

@ Theoretically, neural networks can approximate any reasonable
function (Hornik et al., 1989); closed-form, differentiable functions
could solve inverse problems, provide more principled & accurate
interpolation scheme

@ Can more precisely obey certain constraints, such as conservation of
energy (Mattheakis et al., 2020)

e Embarassingly data-parallel, even in temporal dimensions; more
readily parallelizable for computational speedup
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Artificial Neural Networks

Parametric models loosely based on the human brain. Sequence of affine
transformations followed by activation functions:

y = fiayer, (fayer, s (v (fayer,(¥)) )

where
ﬁayer,-(x) =0 <VV,'TX + b,’) Vi e [1, n]

with o(-) = tanh(-), for example.

\’/( “j\(""\ /""\((H\,_/D‘\“'\‘ c - o)
T~ Ry v
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Unsupervised Neural Networks for Differential Equations

Lagaris et al. (1998) proposed solving differential equations in an

unsupervised manner with neural networks. Consider differential equations
of the form

F(x, W(x), AVW(x), A%V¥(x)) = 0. (1)

The learning problem is formulated as minimizing the sum of squared
errors (i.e. residuals) of the above equation

min  ~ F(x, Wg(x), AWy(x), AWp(x))? (2)
0 xeD
where Wy is a neural network parameterized by 6, and Wy(x) yields
predicted solutions.
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Adjusting for Constraints

Mattheakis et al. (2019) consider adjusting the neural network solution
N(t) to satisfy the initial condition N(ty) = xp. This is achieved by
applying the transformation

R(t) = xo + (1 - e—(f—fo)) N(t) (3)

Intuitively, this adjusts the output of the neural network N(t) to be exactly
Xo When t = tp, and decays this constraint exponentially in t. We apply
this adjustment throughout to satisfy initial and boundary conditions.

102 {00 18

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 11 /56



Example: Simple Harmonic Oscillator

Consider the motion x(t) of an oscillating body (e.g. a mass on a
frictionless spring) given by

X(t)+x(t)=0 (4)

with initial conditions xo = 0 and xp = 1.1 We optimize

min " (%(e) + %(9)” Q

teT

to train the model, where Xy(t) is the output of the neural network.

102 {00 18

'Exact analytical solution x(t) = sin(t)
Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 12 /56



Example: Simple Harmonic Oscillator

A two hidden layer network composed of 30 units per layer solves this
problem to a high degree of accuracy (low mean squared error).

—

W 107

Mean Squared Error
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Step Step t t

For more detail on this classical unsupervised neural network approach, see
e.g. Lagaris et al. (1998); Mattheakis et al. (2019).
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Motivation

@ Classical setting of data following a Gaussian noise model
y=x+e e~ N0, 02 (6)

has clear justification for the squared error loss function (L, norm)
from the maximum likelihood principle
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Motivation

@ Classical setting of data following a Gaussian noise model
y=x+e e~ N0, 02 (6)

has clear justification for the squared error loss function (L, norm)
from the maximum likelihood principle

@ Deterministic differential equations, with no noise model, have no
such justification. To circumvent this we propose learning the loss
function with Generative Adversarial Networks (GANs)

@ Moreover, GANs have been shown to excel in scenarios where classic
loss functions struggle (Larsen et al., 2015; Ledig et al., 2016; Karras

et al., 2018)
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Generative Adversarial Networks (GANs)

Goodfellow et al. (2014) introduced GANs as a two player game between a
generator G and discriminator D such that the generator attempts to trick
the discriminator to classify “fake” samples as “real”. Formally, one
optimizes the minimax objective

minmax V(D, G) = By (9108 D()] + Exp, ) [1 — log D(G(2))] (7)

where x ~ pgata(Xx) denotes samples from the empirical data distribution
and p, ~ N(0,1) samples in latent space. In practice, the optimization
alternates between gradient ascent and descent steps for D and G

respectively.
p y 10301000 1B
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Differential Equation GAN (DEQGAN)

Separate equation into left-hand side LHS and right-hand side RHS, and
set LHS as the “fake” component and RHS as “real”. DEQGAN learns to
approximately solve the equation by setting LHS = RHS.

RHS

|

x 7 LHS
Mesh G autograd D

Ve % ilog(l - p(zHs"))| v % i[logD(RHS(’ ) +1og(1 - D(LHS?))]

1=

{0, 1}
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DEQGAN Algorithm

Algorithm 1 DEQGAN

1. Input: Differential equation F, generator G(:; Qg), discriminator
D(-;64), mesh x of m elements with spacing d, initial/boundary con-
dition adjustment ¢, learning rates o, ap, Adam moment coefficients
Be1, B2, Bp1, Bp2

2: fori=1to N do

3:  Sample m points xs ~ x +N(0, )

4 Forward pass 1/3 = G(xs)

5:  Adjust for conditions ¢/ = ¢(¢))

6: Set LHS = F(x,4/, V', V'), RHS =0

7. Update generator 0 <— Adam(b,, oG, =16, Bs1, Be2)

8:  Update discriminator 04 «— Adam(04, ap,np, Bp1, fD2)

9: end for
Return G
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Extensions to Traditional GANs

@ Two Time-Scale Update Rule (TTUR): discriminator and generator
trained with separate learning rates; in some cases, TTUR ensures
convergence to a stable local Nash equilibrium (Heusel et al., 2017)
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Extensions to Traditional GANs

@ Two Time-Scale Update Rule (TTUR): discriminator and generator
trained with separate learning rates; in some cases, TTUR ensures
convergence to a stable local Nash equilibrium (Heusel et al., 2017)

@ Spectral Normalization (Miyato et al., 2018):

w
Wspy = 8
= ®)
where
o(W) = max ||Wh||a, 9
(W) = max || W ©)

which bounds the Lipschitz constant of the discriminator < 1.
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Experiments

@ Perform experiments on 4 differential equations of increasing
complexity
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Experiments

@ Perform experiments on 4 differential equations of increasing
complexity
@ Compare DEQGAN to the classical unsupervised neural network
method with L1, Ly, and Huber loss functions
€(e)

Quadratic loss

Modulus loss

Huber loss

e

Credit: Pediredla & Seelamantula (2011)

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 20 /56



Experiments

@ Perform experiments on 4 differential equations of increasing
complexity
@ Compare DEQGAN to the classical unsupervised neural network
method with L1, Ly, and Huber loss functions
€(e)

Quadratic loss

Modulus loss

Huber loss

e

Credit: Pediredla & Seelamantula (2011)

@ Show that DEQGAN obtains multiple orders of magnitude lower
mean squared errors than classical neural network methods
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Experiment: Exponential Decay

Consider a model for population decay x(t) given by the exponential
differential equation

x(t) +x(t) = 0, (10)
with initial condition x(0) = 1.2 We set

LHS = x(t) + x(¢),

RHS = 0.

102 {00 18

*The ground truth solution x(t) = ™' can be obtained analytically.
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Experiment: Exponential Decay
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@ G and D losses initially exhibit high variability but reach equilibrium

@ Mean squared error decreases to 107! by step ~400
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Experiment: Exponential Decay
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o DEQGAN achieves ~107° times lower mean squared error than
classic loss functions (see video)
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Experiment: Simple Oscillator

Consider the motion of an idealized oscillating body x(t), which can be
modeled by the simple harmonic oscillator differential equation

() + x(t) =0, (11)
with initial conditions x(0) = 0, and x(0) = 1.3 We set
LHS = x(t) + x(t),

RHS = 0.

102 {00 18

3This differential equation has an exact solution x(t) = sin t.
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Experiment: Simple Oscillator
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@ G and D losses reach equilibrium almost monotonically

@ Mean squared error decreases to ~10~7
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Experiment: Simple Oscillator

Mean squared error
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o DEQGAN achieves ~10~* times lower mean squared error than
classical loss functions (see video)
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Experiment: Nonlinear Oscillator

Consider the less idealized motion x(t) of an oscillating body subject to
additional forces, given by the nonlinear oscillator differential equation

X(t) + 2B%(t) + wx(t) + ¢x(t)? + ex(t)® = 0, (12)

with 5 =0.1,w =1,¢ = 1,e = 0.1 and initial conditions x(0) = 0 and
x(0) = 0.5.% We set

LHS = % + 20x + w?x 4+ ¢x° + ex3,

RHS = 0.

102 {00 18

*The equation does not have an analytical solution. We use the fourth-order
Runge-Kutta method to obtain “ground truth” solutions.
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Experiment: Nonlinear Oscillator
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@ Fast convergence of G and D losses

e Validation mean squared error reaches ~10~7
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Experiment: Nonlinear Oscillator
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e DEQGAN reaches ~10~> times lower error than classical loss
functions (see video)
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Experiment: SIR System of Equations

Consider the Susceptible S(t), Infected /(t), Recovered R(t) model for the
spread of an infectious disease over time t:

dS IS
&~ N (13)
dl IS
dr 5N =l (14)
dR

with 8 = 3, = 1, constant population N =S + / + R, and initial

conditions Sy = 0.99, [p = 0.01, Ry = 0.5

®We obtain ground truth solutions through numerical integration.
Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 30/56



Experiment: SIR System of Equations

We set

ds IS di , R T
LHS = EJFﬂW’dt ﬂi T dt -l
RHS =1[0,0,0]"
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Experiment: SIR System of Equations
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@ Fast convergence of G and D losses to equilibrium
e Validation mean squared error reaches ~10~>

@ Residuals are small for each equation
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Experiment: SIR System of Equations
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108

e DEQGAN obtains ~10~* times lower mean squared error; classic
methods collapse to trivial solution (see video)
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Discussion: Instability to Model Initialization

@ High variability in solution accuracy when model weight initialization
(either D or G, or both) not fixed (via random seed)
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Instability: Varying Model Initialization

@ Random search shows settings exist for each model weight
initialization seed that perform well (filtering on MSE < 1078)

Model Seed G Learning Rate D Learning Rate Log MSE
9 0.00995 0.00997 0.896

Seed
9

o 0.000004 0.000027 -12.57
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Instability: Pattern of Hyperparameters

@ High generator and low discriminator learning rates mostly lead to
best performance; still requires hyperparameter search

Model Seed G Learning Rate D Learning Rate Log MSE
9 0.00995 0.00997 0.896

0.000004 0.000027
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Instability: Solution

@ Perform hyperparameter tuning (e.g. random search) with fixed
model initialization

102 {00 18

®Ray-Tune: https://docs.ray.io/en/latest/tune.html
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Instability: Solution

@ Perform hyperparameter tuning (e.g. random search) with fixed
model initialization

o Leverage hyperparameter tuning schedulers (e.g. asynchronous
Hyperband) to quickly and reliably find good hyperparameter
settings®
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®Ray-Tune: https://docs.ray.io/en/latest/tune.html
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Discussion: Prior Formulations

For completeness, briefly mention negative results:

e Balancing: e.g. setting LHS = x and RHS = —x for exponential.
Fails possibly because “real” data distribution pgata(x) changing as
generator updated

102 {00 18

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 38 /56



Discussion: Prior Formulations

For completeness, briefly mention negative results:
e Balancing: e.g. setting LHS = x and RHS = —x for exponential.
Fails possibly because “real” data distribution pgata(x) changing as
generator updated

@ Semi-Supervised: worse than fully unsupervised; perhaps because
unsupervised solutions require adhering to equation, while supervised

do not

102 {00 18

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 38 /56



Discussion: Prior Formulations

For completeness, briefly mention negative results:

e Balancing: e.g. setting LHS = x and RHS = —x for exponential.
Fails possibly because “real” data distribution pgata(x) changing as
generator updated

@ Semi-Supervised: worse than fully unsupervised; perhaps because
unsupervised solutions require adhering to equation, while supervised
do not

@ Other GAN Extensions: conditional GAN & Wasserstein GAN with
gradient penalty (WGAN-GP); both sub-optimal upon reformulation
and implementation of spectral normalization
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Motivation
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stochasticity (e.g. stochastic gradient descent); sampling can induce
useful stochasticity
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Motivation

@ Unsupervised neural network method for differential equations is not
constrained to a fixed grid of points

@ Non-convex optimization procedures often benefit from introducing
stochasticity (e.g. stochastic gradient descent); sampling can induce
useful stochasticity

@ Our empirical results show that the choice of sampling procedure has
significant impact on convergence and accuracy

102 {00 18

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 40 /56



Methods

@ Fixed grid: no sampling, use the same fixed set of points at each
gradient step
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Methods

@ Fixed grid: no sampling, use the same fixed set of points at each
gradient step

@ Uniformly sampling: each point is sampled i.i.d. uniform with support
over the domain of the problem x ~ U(D)
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Methods

@ Fixed grid: no sampling, use the same fixed set of points at each
gradient step

@ Uniformly sampling: each point is sampled i.i.d. uniform with support
over the domain of the problem x ~ U(D)

o “Perturbed” sampling: “jitter” points from a fixed grid with i.i.d.
Gaussian noise. For each point in the mesh, add

ewN(/x,:O,U:ATX> (16)

where Ax is the inter-point spacing, and 7 is a hyperparameter that
controls sample variance

102 {00 18
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Effect of Tau
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Example: Reynolds-Averaged Navier Stokes

Consider the Reynolds-Averaged Navier Stokes (RANS) equation for the
average velocity profile u of an incompressible fluid at position y in a
one-dimensional channel given by

d’v d 5
Var T dy (“y)

where v = 0.0055, x = 0.41, p = 1 are given constants and % =—lisa
given pressure gradient.

du
dy

du) ldp

— )| —-=—=0 17
dy p dx (17)
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Example: RANS with Fixed Grid

o Overfitting: validation loss diverges by step ~10%

10
10°
b5 | MSE=2.24E-01 .
0 —— Train bl — NN
> O
3 —_— vl J
1071 4 ;
-0.5
=1.04
T T T T T T T T T T T
10° 10° 10° 10° ¢ 10° 0 2 4 6 B
Step u
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Example: RANS with Uniform Sampling

o Overfitting reduced but loss exhibits higher variance; mean squared
error is higher (solution is worse)

10° 10 ———
05| MSE=2.15E +00 o
0 —— Train ool T NN
= 00
| —=- Val
05 R
-
10-1 4
=104
107 10t 107 107 10* 10° 0 2 4 ~ B ]
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Example: RANS with Perturbed Sampling

o Overfitting eliminated, loss variance reduced, and lowest mean
squared error (best solution)

10° 104
0s| MSE=173E-02

wo T Train ol — NN )

U v > v - )
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Conclusion

@ Introduced a new method (DEQGAN) that leverages adversarial
training to learn the loss function for solving differential equations
with unsupervised neural networks
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Conclusion
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Conclusion

@ Introduced a new method (DEQGAN) that leverages adversarial
training to learn the loss function for solving differential equations
with unsupervised neural networks

@ Showed that DEQGAN obtains orders of magnitude lower mean

squared errors than classical unsupervised neural network methods
with Li, Ly, and Huber loss functions

@ Provided a foundation for future work on learning the loss function for
differential equations with unsupervised neural networks

@ Introduced a sampling technique that yields robustness to overfitting
while improving solution quality
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Future Work

@ Experiment with more complex, potentially stochastic, differential
equations

@ Conduct further robustness studies, e.g. across initial conditions and
experiments

@ Investigate more sophisticated sampling techniques, e.g. active
learning

102 {00 18

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 49 /56



Acknowledgements

@ Dr. Pavlos Protopapas, Dr. David Sondak, Dr. Marios Mattheakis,
and Dr. Cengiz Pehlevan for their guidance and support

102 {00 18

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 50 /56



Acknowledgements

@ Dr. Pavlos Protopapas, Dr. David Sondak, Dr. Marios Mattheakis,
and Dr. Cengiz Pehlevan for their guidance and support

@ Harvard FAS Research Computing for computational resources

102 {00 18

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 50 /56



Acknowledgements

@ Dr. Pavlos Protopapas, Dr. David Sondak, Dr. Marios Mattheakis,
and Dr. Cengiz Pehlevan for their guidance and support

@ Harvard FAS Research Computing for computational resources

@ Family and friends for unconditional love and support

102 {00 18

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 50 /56



References

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014).
Generative adversarial networks.

Han, J., Jentzen, A., & Weinan, E. (2017). Overcoming the curse of dimensionality: Solving high-dimensional partial differential
equations using deep learning. ArXiv, abs/1707.02568.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., & Hochreiter, S. (2017). Gans trained by a two
time-scale update rule converge to a nash equilibrium. CoRR, abs/1706.08500.

Hornik, K., Stinchcombe, M., White, H., et al. (1989). Multilayer feedforward networks are universal approximators. Neural
networks, 2(5), 359-366.

Karras, T., Laine, S., & Aila, T. (2018). A style-based generator architecture for generative adversarial networks. CoRR,
abs/1812.04948.

Lagaris, I., Likas, A., & Fotiadis, D. (1998). Artificial neural networks for solving ordinary and partial differential equations.
IEEE Transactions on Neural Networks, 9(5), 987-1000.

Larsen, A. B. L., Sgnderby, S. K., & Winther, O. (2015). Autoencoding beyond pixels using a learned similarity metric. CoRR,
abs/1512.09300.

Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A. P., Tejani, A., Totz, J., Wang, Z., & Shi, W. (2016). Photo-realistic
single image super-resolution using a generative adversarial network. CoRR, abs/1609.04802.

Mattheakis, M., Protopapas, P., Sondak, D., Giovanni, M. D., & Kaxiras, E. (2019). Physical symmetries embedded in neural
networks.

Mattheakis, M., Sondak, D., Dogra, A. S., & Protopapas, P. (2020). Hamiltonian neural networks for solving differential
equations.

Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. CoRR,
abs/1802.05957.

Pediredla, A. K. & Seelamantula, C. S. (2011). A huber-loss-driven clustering technique and its application to robust cell
detection in confocal microscopy images. 2011 7th International Symposium on Image and Signal Processing and Ag
(15PA), (pp. 501-506). b1

Raissi, M. (2018). Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential
equations. arXiv preprint arXiv:1804.07010.

Sirignano, J. & Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving partial differential equations. Journal oi
Computational Physics, 375, 1339-1364.

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 51 /56



Fin

Questions?

102 {00 18

Dylan L. Randle (Harvard) DiffEQ NNs Master's Thesis Defense 52 /56



Additional Material: Exponential with Classical Tuning
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Additional Material: Simple Oscillator with Classical
Tuning
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Additional Material: Nonlinear Oscillator with Classical
Tuning
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Additional Material: SIR System with Classical Tuning
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